
Embedded LDIF
By TeraCortex

Copyright TeraCortex 02/06/15

Table of Contents
Status of This Memo..3

Abstract...3

Copyright Notice..4

1. Overview...5

1.1. Conventions and Terminology..6
1.2. General Implementation Design...7

1.2.1. Dynamically Linked Library (Type I)...7
1.2.2. Binary Executable (Type II)..8

2. Basic Definitions..9

2.1. The EXLDIF Record...9
2.2. EXLDIF Indentation...10
2.3. EXLDIF Comments..10
2.4. Embedding Program Comments...10
2.5. The EXLDIF Record Set...11
2.6. The Program Block...11
2.7. Conflicting Syntax Elements..12

3. Embedded LDIF Operations..13

3.1. Relation to existing documents...13
3.2. CONNECT..14
3.3. DISCONNECT...15
3.4. RESPONSE..15
3.5. Result References...16

3.5.1. Connection Identifier..17
3.5.2. Transaction Identifier..18
3.5.3. Message Identifier...18

4. Changetype Line Parameters..19

4.1. DELAY...19
4.2. CONNID...19
4.3. RESULT..20

5. Value Replacement..21

5.1. Static Value Replacement by Environment Variables...21
5.2. Dynamic Value Replacement by Local Variables...22

6. Asynchronous Mode..22

7. Security Considerations..23

8. IANA Considerations...23

1 02/06/15

9. Acknowledgments..23

10. References..24

10.1. Normative References...24
10.2. Informative References...25

Author's address..25

 Appendix A. Changes...26

2 02/06/15

Independent Submission Christian Hollstein

INTERNET-DRAFT TeraCortex

Intended Status: Proposed Standard February 2015

Expires 2015/08/26

draft-hollstein-embedded-ldif-03.txt

 The Embedded LDAP Data Interchange Format (EMLDIF)

Status of This Memo

 This document is not an Internet Standards Track specification.

 It is published for examination, experimental implementation, and

 evaluation. Distribution of this memo is unlimited.

Abstract

 RFC2849 and EXLDIF specify how LDAP operations can be

 represented in a text file. Client implementations may use this

 data to send sequences of requests to a LDAP server. This document

 specifies how values from the server's response can be propagated,

 displayed and used for decision taking in procedural logic. It

 enables EXLDIF with algorithmic behavior. The general method is to

 use EXLDIF embedded in a high level programming language like C/C++,

 Java and others.

3 02/06/15

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal

 Provisions Relating to IETF Documents

 (http://trustee.ietf.org/license-info) in effect on the date of

 publication of this document. Please review these documents

 carefully, as they describe your rights and restrictions with

 respect to this document.

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current

 Internet-Drafts is at http://datatracker.ietf.org/drafts/current.

 Internet-Drafts are draft documents valid for a maximum of six

 months and may be updated, replaced, or obsoleted by other

 documents at any time. It is inappropriate to use Internet-

 Drafts as reference material or to cite them other than as

 "work in progress."

4 02/06/15

http://datatracker.ietf.org/drafts/current

1. Overview

 This document specfies how EXLDIF can be embedded and used in a high

 level programming language. Embedding adds the following

 capabilities to EXLDIF:

 - Making use of all capabilities of the embedding language like

 object oriented or structured programming

 - Decision taking based on the result codes or data content of

 server responses to previous requests

 - Full support for LDAP transactions [RFC5805]

 - Execution of EXLDIF requests inside of loops, branches

 - Execution of EXLDIF requests inside of methods

 - Dynamic replacement of attribute values and / or distinguished

 names by internal variables of the program or external

 environment variables

 - Multiple connections per thread of execution

 - Multiple threads per Embedded LDIF source file

 - Request delay

 - Asynchronous mode in conjunction with [QLENCONTROL]

 The chapters 2 through 6 give a formal specification of the language

 elements. For comprehensive examples in the language C please refer

 to [EMLDIF-C]

5 02/06/15

1.1. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

 document are to be interpreted as described in [RFC2119].

 Today's high level languages are either object oriented or

 structured. A common property is the ability to organize

 recurring functionality into some sort of callable entity. In

 object oriented languages these entities a called "methods". In

 structured language they are known as "functions", "procedures" or

 "subroutines". This specification uses the term "method" to refer

 to a callable entity regardless of particular programming languages.

6 02/06/15

1.2. General Implementation Design

 The general method how to process an Embedded EXLDIF source code file

 is assumed to be independant from the the specific programming

 language used to embed EXLDIF. Implementations may vary but the

 functionalities below are expected a common appearance:

 a) Replace any occurence of external environment variables by

 their real values.

 b) Parse the source file and translate all EXLDIF records into an

 internal format suitable for LDAP protocol level encoding.

 c) Generate an intermediate file with all EXLDIF code replaced by

 calls to methods that can be executed from within the chosen

 programming language. Give the calls appropriate arguments with

 data content coming from the internal representation of the

 parsed EXLDIF records.

 From this point two different types of execution profile are

 possible.

1.2.1. Dynamically Linked Library (Type I)

 Implementations SHOULD take this approach if the choosen programming

 language supports dynamic linking. The language specific compiler is

 called to translate the parsed and converted intermediate file into

 a dynamically attachable library. Then the library is linked with

 the running process and executed. With this design all steps are

 performed in a single sequence. This is the preferred method.

7 02/06/15

1.2.2. Binary Executable (Type II)

 Implementations MUST take this approach if the choosen programming

 language does not support dynamic linking. The language specific

 compiler is called to translate the parsed and converted

 intermediate file into a binary executable. The generated binary

 is called right away or executed later independently. This method

 requires that the parser functionality (b) of chapter 1.2. is called

 once again in the generated binary. Otherwise the data structures

 representing the EXLDIF record content are not available.

8 02/06/15

2. Basic Definitions

 This chapter specifies the basic structure of Embedded LDIF.

 Implementations MUST report any violations of the rules below as

 syntax error. If there are syntax errors, LDAP requests MUST NOT

 be sent to the server.

2.1. The EXLDIF Record

 Any EXLDIF record starts with the keyword "dn:", possibly followed

 by the distinguished name value on the same line. Below this line

 a sequence of EXLDIF directives and / or EXLDIF comments appears as

 specified in [RFC2849] and [EXLDIF]. The first empty line below

 this sequence terminates the EXLDIF record. It is an integral part of

 the EXLDIF record syntax. An empty line is a line that solely

 consists of white space characters.

 Each record inside an Embedded LDIF source code file has an implicit

 numeric identifier. Record identifiers are counted individually in

 each method top to bottom making records relative to the method they

 are located in. The upmost record in the method has the ID 0, the

 next one 1 and so on, making identifers an implicit property based

 on the record position in the method. There is no syntactic element

 to a assign an identifier explicitely to a particular record. Record

 identifiers are not affected by changes of declarations, statements,

 branches, or loops in the embedding program. They are affected by

 insertions or deletions of other records inside the same method.

9 02/06/15

2.2. EXLDIF Indentation

 Embedded LDIF MAY be indented by a number of space characters (ASCII

 0x20). Tabs are not allowed. Any directive inside a EXLDIF record

 MUST be indented by the same amount of spaces. Continued lines are

 indented by one more space, means: If "N" is the number of spaces

 from the begin of the line up to the "dn:" keyword, any directive

 or comment line inside this EXLDIF record MUST be indented by "N"

 spaces as well. Continued directive lines or comment lines inside

 this record MUST be indented by "N+1".

2.3. EXLDIF Comments

 EXLDIF records may contain comment lines. A comment line begins with

 a hash (ASCII 0x23, '#'). Comment lines MUST follow the same

 indentation rules as non - comment lines of the EXLDIF record.

 Outside of LDIF records comments MUST be in the style of the

 embedding program.

2.4. Embedding Program Comments

 Comments in the style of the embedding program MUST NOT be placed

 inside the EXLDIF record. This applies also to the terminating empty

 line of a EXLDIF record.

10 02/06/15

2.5. The EXLDIF Record Set

 A EXLDIF record set is the maximum sequence of LDIF records separated

 from each other by one or more empty lines or comments in the style

 of the embedding program. It starts with the first (maybe indented)

 EXLDIF record below a code line or comment of the embedding program.

 The EXLDIF record set ends when a non - empty line follows an empty

 line and the non - empty line is not a dn-spec.

2.6. The Program Block

 High level programming languages have the concept of structuring

 sequences of declarations and statements into "blocks". Blocks can

 be nested. Normally there are syntactic elements to start and

 terminate blocks, e.g. curly brackets (C, C++, Java) or keywords

 (BEGIN, END in Algol, Pascal) or indentation is used to express a

 block structure. The embedded program MUST support the concept of

 such blocks. A particular EXLDIF record set MUST completely be

 contained inside a block of the program. Block nesting is of course

 allowed.

11 02/06/15

2.7. Conflicting Syntax Elements

 It cannot be ruled out that programming languages offer syntax

 elements that conflict with Embedded LDIF syntax. Of particular

 interest is the dn-spec production:

 dn: ...

 It is the keyword from which an Embedded LDIF parser can recognize

 the start of a EXLDIF record. There is a conflict if the embedding

 program syntax allows for such a (possibly indented) keyword at the

 begin of a line being part of the program code. In these cases the

 particular language SHOULD be avoided for use with Embedded LDIF.

 In any case programmers MUST NOT use syntax elements of the

 programming language at positions that lead to conflicts with

 Embedded LDIF syntax.

12 02/06/15

3. Embedded LDIF Operations

3.1. Relation to existing documents

 This specification relies on [RFC2849], [EXLDIF] and

 [QLENCONTROL].

 [EXLDIF] contains the following definition of a change record:

 changerecord = "changetype:" FILL

 (change-add / change-delete /

 change-modify / change-moddn /

 operation-bind / operation-unbind /

 operation-compare / operation-search /

 operation-extended / operation-abandon)

 This is extended as follows:

 changerecord = "changetype:" FILL

 (change-add / change-delete /

 change-modify / change-moddn /

 operation-bind / operation-unbind /

 operation-compare / operation-search /

 operation-extended / operation-abandon /

 operation-conncet / operation-disconnect /

 operation-response)

 The ABNF forms below make use of ABNF definitions already presented

 in [RFC2849] and [RFC3986]. Of particular interest are:

 - hostport The hostport from Section 5 of [RFC3986]

13 02/06/15

 - DIGIT DIGIT definition from [RFC2849]

 - FILL FILL definition from [RFC2849]

 - SEP SEP definition from [RFC2849]

 Either of the additional operations is covered in the following

 chapters. For the sake of simplicity the keywords "dn" and

 "changetype" are used for the additional operations despite the

 fact that they have nothing to do with LDAP. Their semantics are

 on TCP level.

3.2. CONNECT

 CONNECT = "dn:" SEP operation-connect

 operation-connect = "connect" SEP

 "connection:" FILL 1*restricted-url SEP

 restricted-url = scheme "://" ([hostport] / filename)

 scheme = ("ldap" / "ldaps" / "file")

 The connection information is used to establish a TCP connection

 to the server. If the port part of hostport is ommitted,

 implementations SHOULD examine the scheme. If the scheme is "ldap"

 they SHOULD try to connection to the port 389. If the scheme is

 "ldaps", they SHOULD try to connect to the port 636. If the scheme

 is "file" the value "filename" refers to a file in the machine's

 file system. In this case the LDAP messages are dumped BER encoded

14 02/06/15

 to the given file. Multi threaded implementations MUST either add

 automatically a numeric suffix to the file name according to the

 number of the thread that emits the output stream or synchronize

 concurrent access of different threads to the same output file.

3.3. DISCONNECT

 DISCONNECT = "dn:" SEP "disconnect" SEP

3.4. RESPONSE

 RESPONSE = "dn:" SEP operation-response

 operation-response = "response" SEP

 "responses:" FILL 1*DIGIT SEP

 The value for the "responses" keyword is an integer. It MUST give

 the number of responses the client expects to receive from the

 server.

15 02/06/15

3.5. Result References

 A reference is a means to refer to results of requests already sent

 to the server. In time it points always into the past. In terms of

 its position in the Embedded LDIF source code file it may point to

 previous or subsequent records or even to a record in a different

 file. The server MUST already have responded to the request and the

 client MUST have processed the response before a reference can have

 any effect. There are three types of references. The reference

 syntax is as follows:

 REFERENCE = FILE ":" CLASS ":" METHOD ":" RECORD ":" THREAD ":"

 INSTANCE

 FILE The name of one of the Embedded LDIF source code input

 files that are currently processed. If FILE is empty, the

 current input file is meant.

 CLASS The name of a class definition in the referred input FILE.

 This is only relevant for object - oriented embedding

 programs that have intrinsic support for object classes.

 In structured programming languages CLASS is empty.

 METHOD The name of a method in the referenced CLASS if CLASS is

 used. In structured programming languages METHOD refers to

 a function, procedure or subroutine inside the referred

 FILE.

 RECORD 1*DIGIT

 This is the identifier of the referenced record.

 THREAD 1*DIGIT [-1 ... N]

16 02/06/15

 This is the identifier of a thread in the in client

 execution runtime, if the implementation supports

 multiple parallel threads. Otherwise it is always

 zero. If negative it refers to the own thread.

 INSTANCE 1*DIGIT [0 ... N]

 This identifies a particular executed instance of the

 referenced record. Records may be executed inside loops

 where each invocation yields a different result. INSTANCE

 is a means to access such particular results.

3.5.1. Connection Identifier

 connection-identifier = "connectionId(" REFERENCE ")"

 This reference MUST point to a record of type "connect". It makes

 the referenced connection available to the referencing record.

 Implementations MUST send the referencing LDAP request to the given

 connection and receive the response(s) from there. The syntax of

 records using connection-identifier is specified in chapter 4.

17 02/06/15

3.5.2. Transaction Identifier

 transaction-identifier = "transactionId(" REFERENCE ")"

 This reference MUST point to a record of type extended. The record

 must contain an extended request suitable to invoke a "transaction

 begin" operation. This reference MUST NOT be used except as value

 of a transaction control. For LDAP transactions please refer to

 [RFC5805].

 The syntax for controls using this reference is:

 "control:" FILL trans-oid 1*SPACE "true:" connection-identifier

 trans-oid = ("1.3.6.1.1.21.2" / propriatary-oid)

 propriatary-oid Object identifier used in propriatary

 implementations of transaction semantics.

3.5.3. Message Identifier

 message-identifier = "messageId(" REFERENCE ")"

 This reference MUST point to a record representing a type of request

 that can be abandoned. It MUST NOT be used except as value of the

 "messageId:" directive of an abandon record. Please refer to

 [RFC4511] for a list of request types that can be abandoned.

 The syntax for the "messageId:" directive of abandon requests using

 this reference is:

 "messageId:" FILL message-identifier

18 02/06/15

4. Changetype Line Parameters

 The behavior of EXLDIF records can be modified by a small set of

 parameters. These parameters are concatenated at the "changetype"

 lines:

 changeline = "changetype:" FILL

 changetype

 0*1(1*SPACE DELAY)

 0*1(1*SPACE CONNID)

 0*1(1*SPACE RESULT) SEP

 changetype = ("add" / "delete" / "modify" / "moddn" /

 "bind" / "unbind" / "compare" / "search" /

 "extended" / "abandon" / "conncet" / "disconnect" /

 "response"

)

4.1. DELAY

 DELAY = 1*DIGIT

 This parameter is an integer giving the request delay in milli

 seconds. Implementations MUST apply this delay before the request

 encoded in this EXLDIF record is sent to the LDAP server.

4.2. CONNID

 CONNID = connection-identifier

19 02/06/15

4.3. RESULT

 RESULT = "result(" result-variable ":" result-count ":"

 result-objects ")"

 result-variable The name of a a local variable that will contain

 a list of results. The syntax of local variable

 names is specific to the embedding program

 language.

 result-count = 1*DIGIT

 This is an integer giving the maximum number of

 record invocations for which a result will be

 stored.

 result-objects = 1*DIGIT

 This is an integer giving the maximum number of

 objects that will be stored as response to a

 search request per invocation of the record.

 Implementation MUST store the results up to the limits of result

 count and object count (search requests only) in result-variable.

 From there results can be accessed by the embedding program.

 Typically result-variable will be some sort of array, linked list

 or other appropriate arrangement of structured data. The precise

 data model layout is specific to the embedding language.

20 02/06/15

5. Value Replacement

 There are two types of value replacement: A static one and a

 dynamic one. Both of them use the variable name production:

 var-name = 1*(ALPHA / DIGIT / "-" / "_")

5.1. Static Value Replacement by Environment Variables

 An environment variable takes the following form

 envvar = ("${" var-name "}" / "$" var-name)

 The first form SHOULD be used when the first character after the

 variable name matches the var-name character set. The second form

 MAY be used when this condition is false. Environment variables

 SHOULD have been exported on operating system level in order to

 take effect. Implmentations MUST try to resolve the environment

 variable and replace each such occurence in the source code file by

 the real value. Failure to do so SHOULD be reported as an error.

 From the point of LDAP request processing these variables are

 static. Their value does not change until the program terminates.

21 02/06/15

5.2. Dynamic Value Replacement by Local Variables

 Local variables can be used to alter the behavior of EXLDIF records.

 EXLDIF attribute values are replaced with the values of variables of

 the embedding program. Replacement takes place dynamically while

 LDAP requests are processed. The mechanism is based on a variable

 representation specified in [POSIX] for the "printf" library element.

 Embedded LDIF uses a subset of the "printf" functionality:

 dynvar = "%" *DIGIT ("d" / "s" / "f") "_" var-name "%"

 With this syntax variables values can be represented as integer

 numbers, strings or floating point numbers either in fixed length

 or variable length format. Programmers SHOULD use the conversion

 appropriate for the data type of the variable.

6. Asynchronous Mode

 Embedded LDIF support asynchronous mode by means of [QLENCONTROL]

 and the RESPONSE record type. [QLENCONTROL] gives a number of

 requests to be sent in a row without waiting for an individual

 response. Responses MUST be awaited for after the last request

 in the asynchronous queue has been sent. For this purpose the

 RESPONSE record must be used. The numeric value for the "responses:"

 directive MUST match the number of requests in the asynchronous

 queue as given in [QLENCONTROL].

22 02/06/15

7. Security Considerations

 In addition to the security issues of LDIF files [RFC2849] Extended

 LDIF may contain authentication information used for BIND operations.

 This sensitive data MUST NOT be displayed to unauthorized people.

 In Embedded LDIF it is pretty easy to create a program firing

 millions of requests to a LDAP server in short time frame. Such

 denial of service attacks are illegal. Their prevention is not in

 scope of this specification.

 General security considerations [RFC4510], especially those

 associated with update operations [RFC4511], apply to this extension.

8. IANA Considerations

 There are no new object identifiers associated with this

 specification.

9. Acknowledgments

 The author gratefully acknowledges the contributions made by

 Internet Engineering Task Force participants.

23 02/06/15

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", RFC 2119, March 1997.

 [RFC2849] Good, G., "The LDAP Data Interchange Format (LDIF) -

 Technical Specification", RFC 2849, June 2000.

 [RFC3986] Berners-Lee, T., Ed., Masinter, L., Ed., "Uniform

 Resource Identifier (URI): Generic Syntax", RFC 3986,

 January 2005

 [RFC4510] Zeilenga, K., Ed., "Lightweight Directory Access

 Protocol (LDAP): Technical Specification Road Map", RFC

 4510, June 2006.

 [RFC4511] Sermersheim, J., Ed., "Lightweight Directory Access

 Protocol (LDAP): The Protocol", RFC 4511, June 2006.

 [POSIX] IEEE Std 1003.1, 2003 Edition

24 02/06/15

10.2. Informative References

 [RFC5805] Zeilenga, K., "Lightweight Directory Access Protocol

 (LDAP) Transactions", RFC 5805, March 2010.

 [EXLDIF] Hollstein, C., "The Extended LDAP Data Interchange

 Format (EXLDIF)", draft-hollstein-extended-ldif-03.txt,

 February 2015.

 [EMLDIF-C] Hollstein, C., "The Embedded LDAP Data Interchange

 Format for C (EMLDIF-C)",

 draft-hollstein-embedded-ldif-c-03.txt, February 2015.

 [QLENCONTROL] Hollstein, C., "LDAP Queue Length Control",

 draft-hollstein-queuelength-control-03.txt,

 February 2015

Author's address

Christian Hollstein E-Mail: chollstein@teracortex.com

TeraCortex Phone: 0049 / 5473 / 9933

Hopfenbrede 2 Mobile: 0049 / 160 / 96220958

D-49179 Ostercappeln

25 02/06/15

mailto:chollstein@teracortex.com

 Appendix A. Changes

 Added in chapter 3.5 (Result References) the option "-1" to refer

 to resources of the own thread.

 Changed for dynamic value replacement (chapter 5.2) the separator

 between the format specifier and the variable name from ":" to "_".

 This is necessary to avoid conflicts in dynamic value replacements

 of extensible search filters which might contain colons (":")

 anyway.

26 02/06/15

	Status of This Memo
	Abstract
	Copyright Notice
	1. Overview
	1.1. Conventions and Terminology
	1.2. General Implementation Design
	1.2.1. Dynamically Linked Library (Type I)
	1.2.2. Binary Executable (Type II)

	2. Basic Definitions
	2.1. The EXLDIF Record
	2.2. EXLDIF Indentation
	2.3. EXLDIF Comments
	2.4. Embedding Program Comments
	2.5. The EXLDIF Record Set
	2.6. The Program Block
	2.7. Conflicting Syntax Elements

	3. Embedded LDIF Operations
	3.1. Relation to existing documents
	3.2. CONNECT
	3.3. DISCONNECT
	3.4. RESPONSE
	3.5. Result References
	3.5.1. Connection Identifier
	3.5.2. Transaction Identifier
	3.5.3. Message Identifier

	4. Changetype Line Parameters
	4.1. DELAY
	4.2. CONNID
	4.3. RESULT

	5. Value Replacement
	5.1. Static Value Replacement by Environment Variables
	5.2. Dynamic Value Replacement by Local Variables

	6. Asynchronous Mode
	7. Security Considerations
	8. IANA Considerations
	9. Acknowledgments
	10. References
	10.1. Normative References
	10.2. Informative References

	Author's address
	Appendix A. Changes

